On Petrov-galerkin Formulations for the Linear Hyperbolic Equation

نویسنده

  • L. P. Franca
چکیده

We consider conforming Petrov-Galerkin formulations for the advective and advec-tive-diiusive equations. For the linear hyperbolic equation, the continuous formulation is set up using diierent spaces and the discretization follows with diierent \bubble" enrichments for the test and trial spaces. Boundary conditions for residual-free bubbles are modiied to accommodate with the rst order equation case and regular bubbles are used to enrich the other space. Using piecewise linears with these enrichments, the nal formulations are shown to be equivalent to the SUPG method, provided the data is assumed to be piecewise constant. Generalization to include diiusion is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations

 Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...

متن کامل

Legendre and Chebyshev dual-Petrov–Galerkin methods for Hyperbolic equations

A Legendre and Chebyshev dual-Petrov–Galerkin method for hyperbolic equations is introduced and analyzed. The dual-Petrov– Galerkin method is based on a natural variational formulation for hyperbolic equations. Consequently, it enjoys some advantages which are not available for methods based on other formulations. More precisely, it is shown that (i) the dual-Petrov–Galerkin method is always st...

متن کامل

Space-Time Discontinuous Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems

We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov–Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a para...

متن کامل

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007